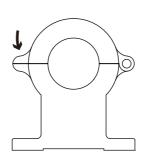


Hall split core current sensor

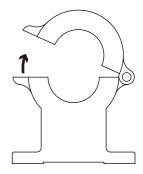
Open loop split core type, Sub-plate installation, terminal output. Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.

Back view

Fixed hole view

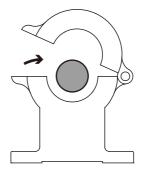


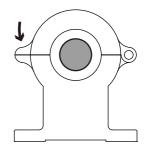
Opening view


Installation diagram

Product features

- ·Light weight
- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability


1.Loosen the screw


2.Open up

Product application

- Railway
- Metallurgical
- Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor

3.In the lead

4. Tighten the screws

•Uninterrupted power supply and communication power supply

Electrical parameters: (The following parameters are typical values and actual values will be subject to product testing)

Remarks:

$I_{_{\mathrm{PN}}}$	Rated input	±200A	±500A	±800A	±1000A	±1200A	±1500A	Standard input
Ipm	Input measurement range	±240A	±600 A	±960 A	±1200A	±1440A	±1800A	Default is 1.2 times of rated input
Vout	Rated output	$\pm4\mathrm{V}$						Standard output
X	Accuracy	1%						$I = I_{PN}$
εL	Linearity	1%						$I=0^{\sim} \pm I_{PN}$
Vс	Supply voltage	\pm 12V/ \pm 15V						One or the other Supply voltage range±5%
Ιc	Current consumption	\leqslant \pm 16mA						Reference will be subject to the measured
R1	Load impedance	≥10KΩ						Collection port impedance while lower voltage affect accuracy
Voe	Zero offset voltage	$\leq \pm 15 \mathrm{mV}$						TA=25°C
Tr	Response time	€5 μ s						Reference will be subject to the measured
N.w	Weight	238g						Reference will be subject to the measured
Та	Operation temperature	-10 \sim $+70$ $^{\circ}$ C						
Ts	Storage temperature	-25 ∼ + 70 °C						
Bw	Band width	$\mathrm{DC}^{\sim}25\mathrm{KHz}$						Factory test according to DC
Vd	Delectric strength	2.5KV 50Hz 1min						

Instructions for use:

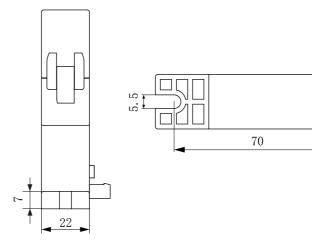
- 1. According to the connection mode of correct connection
- 2. The direction shown by the arrow is positive
- 3. With hole measurement, response time and following the speed for the best
- 4. Faulty wiring can lead to product damage and output uncertainty

Safe operation:

- *Please read this specification carefully before use.
- *When you need to move the product, please be sure to disconnect the power and all the connected cables.
- *If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- *If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.

Proclamations:

As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.


Dimensions(in $mm\pm0.5$):

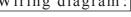
9 \otimes Built-in gain zero

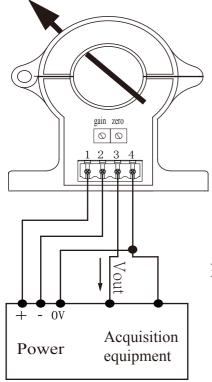
Front view

Current direction

Print surface **←** Epoxy surface

Side view


Bottom view


Connector Illustration

Wiring diagram:

Terminal definition:

Crimping terminal fast plug 2EDG-5.08-4p spacing 5.08mm

1: +V

2: -V

3: Vout

4: 0V

Potentiometer definition:

Left: gain

right: zero

X Detection:

- ①Choose the auxiliary power supply with small ripple ($\leq 10 \text{mV}$)
- ②Switch on auxiliary power
- (3) The auxiliary power is connected to the sensor
- 4 The sensor detects the primary current