

Hall split core current sensor

Open loop split core type, terminal output. Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.

Front view

Opening view

Installation diagram

Product features

- ·Light weight
- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability

Product application

- Railway
- Metallurgical
- Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor
- •Uninterrupted power supply and communication power supply

1. Loosen the screw 1. Loosen the screw 2. Open up 3. In the copper platoon

4. Tighten the screws

Electrical parameters: (The following parameters are typical values and actual values will be subject to product testing)

Remarks:

I _{PN}	Rated input	±2000A	±3000A	$\pm 4000 A$	±5000A	Standard input
Ipm	Input measurement range	±2200A	$\pm 3600 A$	$\pm 4800 A$	$\pm 5000A$	Default is 1.2 times of rated input
Vout	Rated output	$2.5V \pm 0.625V$				Standard output
X	Accuracy	1%				$I = I_{PN}$
εL	Linearity	1%				$I=0^{\sim} \pm I_{PN}$
Vс	Supply voltage	+ 5 V				Supply voltage range±5%
Ιc	Current consumption	≤16mA				Reference will be subject to the measured
R1	Load impedance	≥10KΩ				Collection port impedance while lower voltage affect accuracy
Voe	Zero offset voltage	\leqslant \pm 15mV				TA=25°C
Tr	Response time	≤5 μ s				Reference will be subject to the measured
N.w	Weight	4537g				Reference will be subject to the measured
Ta	Operation temperature	-10 ~+70 °C				
Ts	Storage temperature	-25~+70°C				
Bw	Band width	-				Factory test according to DC
Vd	Delectric strength	6KV 50Hz 1min				

Factory commissioning:

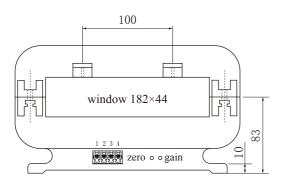
Calculation formula: 2.5V±0.625V 0V datum

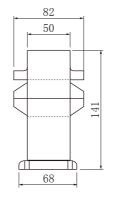
- 1. Debugging with 0V as the reference point(acquiescence) Forward direction: 2.5+ (I/I_{PN}) *0.625
 - Reverse direction: $2.5-(1/I_{PN})*0.625$
- 2. Debug with Vref as the reference point(optional)

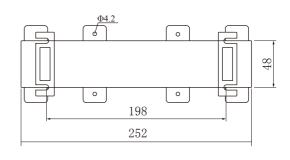
Instructions for use:

- 1. According to the connection mode of correct connection
- 2. The direction shown by the arrow is positive
- 3. With hole measurement, response time and following the speed for the best
- 4. Faulty wiring can lead to product damage and output uncertainty

Safe operation:


- *Please read this specification carefully before use.
- *When you need to move the product, please be sure to disconnect the power and all the connected cables.
- *If found shell, devices attached to the fixed parts, wire, or have any damaged, please immediately deal with hidden dangers.
- *If there is any doubt about the safe operation of the equipment, the equipment and the corresponding accessories should be closed immediately, and the fastest time for troubleshooting.


Proclamations:


As our products are constantly being improved and updated, we reserve the right to modify the content of this specification at any time without prior notice.

Dimensions (in $mm\pm0.5$):

Front view

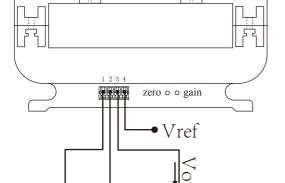
Side view

Bottom view

Wiring diagram:

Connector Illustration

KF2EDGK-3.81-4P, spacing 3.81mm


Terminal definition:

1: +V

2: 0V

3: Vout

4: Vref (Can be suspended, not grounded)

Acquisition

equipment

0V

Power

Potentiometer definition:

Left: zero

right: gain

X Detection:

①Choose the auxiliary power supply with small ripple ($\leq 10 mV$)

②Switch on auxiliary power

③The auxiliary power is connected to the sensor

(4) The sensor detects the primary current